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ABSTRACT
We propose a texture synthesis method based on generative ad-
versarial networks, focusing on a cultural emblem, called Batik,
of southeastern Asian countries. We propose a two-stage training
approach to construct the network, first generating patches and
then combining patches to generate the entire Batik image. Regular
repetition and synthesis artifact removal are jointly considered to
guide model training. In the evaluation, we show that the proposed
generator fuses two Batik styles, removes blocking artifacts, and
generates harmonious Batik images. Qualitative and quantitative
evaluations are provided to show promising performance from
several perspectives.

CCS CONCEPTS
• Information systems→ Image search; •Computingmethod-

ologies → Image representations.
KEYWORDS

texture synthesis, image generation, generative adversarial net-
work
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1 INTRODUCTION
Texture synthesis has been studied for years because of its wide
applications. Interestingly, different cultures have their unique tex-
ture elements, making specific texture symbolize different cultures.
Batik, for example, presents texture patterns uniquely in southeast-
ern Asia like Indonesia and Malaysia. Because of its mysterious
and fascinating lines and color schemes, it was recognized as the
cultural heritage of Indonesia in 2009. Recently, Batik has become
widely-spread texture patterns for clothes design and decoration.

In the past, the goal of image style transfer is to transfer the
source image into that with the style of the target image. However,
we notice that it is very difficult for users to imagine how the image
looks like when two styles are mixed. On the other hand, current
texture synthesis methods focus on expanding a given patch with
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Figure 1: The proposed framework consists of two stages, i.e.,
patch generator and Batik image generator.

the consideration of continuity and geometric structure. There is
no good way to generate a texture image jointly considering two
patches with different styles. In this work, we propose a method
somehow in-between image style transfer and texture synthesis,
which takes Batik image generation as the target domain. Particu-
larly, we propose a generative adversarial network (GAN) to create
Batik images based on two patches with different styles.

Fig. 1 illustrates the proposed two-stage framework. First, a
patch generator is constructed to generate basic image patches. We
adopt Wasserstein Generative Adversarial Networks with Gradi-
ent Penalty (WGAN-GP) [3] to build the patch generator. Second,
a Batik image generator is constructed based on two generated
patches selected by the user. The Batik image generator learns to
place patches and aims to generate harmonious Batik images. The
reason to divide the entire framework into two parts is that directly
generating Batik images consisting of rich (high-variation task) and
regularly located patches (low-variation task) is too challenging.
Conceptually the two parts are somewhat contradictive. Dividing
it into two separate parts would make each part focus on its task.

Our contributions are twofold:

• We explore regular-texture synthesis based on patches of two
different texture styles. With two patches as input, the Batik
image generator fuses styles of two patches, and generates a
Batik image of a new style.

• This would be one of the first works focusing on generating
images of a cultural emblem.

2 SYSTEM FRAMEWORK
2.1 Patch Generator
In this work, we adopt WGAN-GP [3] to implement the patch
generator. The discriminator D learns to distinguish the generated
fake image from the real image, and the generator G tries to fool
the discriminator by generating good images. The WGAN-GP is
constructed by finding the best settings via the following minimax
game:

min
G

max
D

Ladv . (1)

https://doi.org/10.1145/3379173.3393710
https://doi.org/10.1145/3379173.3393710


MMArt-ACM ’20, June 8, 2020, Dublin, Ireland Wei-Ta Chu and Lin-Yu Ko

Figure 2: Illustration of the proposed BatikGAN.

The loss function Ladv can be formulated as:

Ladv = Ex̃ ∽Pд [D(x̃)] − Ex ∽Pr [D(x)]

+ λEx̂ ∽Px̂ [(∥ ∇x̂D(x̂) ∥2 −1)2]︸                                ︷︷                                ︸
дradient penalty

(2)

where Pд is the model distribution implicitly defined by x̃ = G(z),
z ∽ p(z) . Pr is the data distribution. x̂ ∽ Px̂ means sampling
uniformly along straight lines between pairs of points sampled
from a distribution. Detailed explanation please refer to [3].

By constructing the generator based on various Batik patches,
we can make the generator capture characteristics of Batik patches
and thus generate appropriate patches.

2.2 Batik Generator
To combine two Batik patches, we design a Batik generator that
fuses styles of two patches and generates a new Batik image. A
major challenge for this task is to make the generated Batik harmo-
nious.We design a local feature loss to guidemodel training, making
the generated image harmonious with fewer blocking artifacts.

2.2.1 BatikGAN. We first develop a baseline system called Batik-
GAN, as illustrated in Figure 2. Based on patch pairs PatchA and
PatchB cut from Batik training images {x}, the BatikGAN is con-
structed to include two generatorsGB1 andGB2, and a discriminator
Dдlobal . Feeding PatchA and PatchB toGB1 andGB2, respectively,
feature maps FA and FB are generated by GB1 and GB2. These
two feature maps are stacked together as FAB . Then, the Batik
image IBatik is generated from FAB through the fusion function
Φ, i.e., IBatik = Φ(FAB ). The fusion function is implemented by 3
convolutional layers.

The discriminatorDдlobal aims to distinguishwhether the gener-
ated image IBatik is real or fake. Given the training data {x, PatchA, PatchB },
the BatikGAN is constructed by finding the best settings via the
following minimax game:

min
IBatik

max
Dдlobal

L
(1)
adv + L

(1)
local_l2, (3)

where the adversarial loss L(1)
adv is given as

L
(1)
adv (IBatik ,Dдlobal ) = Ex [logDдlobal (x)]

+E[log(1 − Dдlobal (IBatik ))].
(4)

Figure 3: Illustration of the BatikGAN with style features
(named as the BatikGAN_S model).

For L(1)
local_l2, we notice that two patches are usually interlaced

in a Batik image. We thus design a scheme to enforce repetition. Let
us equally divide a generated images into 16 blocks. The blocks from
left to right, top to bottom, are denoted as block1, block2, block3, ...,
and block16, respectively. The loss considering repetition and local
information is designed as :

L
(1)
local_l2 =

∑
y∈Y

√
(PatchA − Blocky )2 +

∑
z∈Z

√
(PatchB − Blockz )2 . (5)

where Y = {1, 3, 6, 8, 9, 11, 14, 16} is a set of indices indicating a
part of the blocks, and Z = {2, 4, 5, 7, 10, 12, 13, 15} is also a set of
indices indicating another part of blocks. Notice that the indices in
Y and Z are interlaced.

2.2.2 BatikGAN with Style Features. Although the BatikGAN en-
ables fair generation results, color and style attributes of generation
results are usually not satisfactory. Motivated by [1][8][11], we
want to further consider style features extracted by the VGG-19
model pre-trained on the ImageNet dataset, as shown in Figure 3.
The VGG-19 model consists of sixteen convolutional layers and
three fully-connected layers. The convolutional layers are named
as conv1_1, conv1_2, conv2_1, conv2_2, and so on. The conv3_1
layer, for example, is the 5th convolutional layer that just follows
the second pooling layer. In the VGG-19 model, ReLU is used as
the activation function. Let relui_j denote the result of convi_j
with ReLU activation. We compute Gram matrices between the
feature maps output by the relu1_1, relu2_1, relu3_1, relu4_1, and
relu5_1 layers, respectively. Then, we compute the L2 distances
between the corresponding Gram matrices of the generated image
and the ground truth, and sum up the corresponding distances as
style loss L(2)

style . The weights to integrate distances from relu1_1,
relu2_1, relu3_1, relu4_1, and relu5_1 are set to 0.244, 0.061, 0.015,
0.004, and 0.004, respectively. More specifically, they are given by
1000/(64× 64), 1000/(128× 128), 1000/(256× 256), 1000/(512× 512),
and 1000/(512 × 512), as mentioned in [11].

Finally, the overall loss function L
(2)
BatikGAN _S of the BatikGAN

with style features can be written as:

L
(2)
BatikGAN _S = L

(2)
adv + L

(2)
local_l2 + L

(2)
style , (6)

where the adversarial lossL(2)
adv and the patch L2 distanceL(2)

local_l2
are defined as the same way in Sec. 2.2.1.
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Figure 4: Illustration of BatikGAN model with style and lo-
cal feature (BatikGAN_SL).

2.2.3 BatikGAN with Style and Local Features. One problem of the
BatikGAN_S model is that it relies too much on the patch-based L2
distance. Although it makes generated patches well interlaced, it
yields obvious blocking artifacts. The generated images usually look
like a simple repetition of two patches. Motivated by [10], we design
a local discriminator Dlocal to judge details of generated images.
The local discriminator, in contrast to the global discriminator
Dдlobal mentioned earlier, only checks small local regions. We
randomly samplem cropped region of size s × s from the generated
image IBatik and the ground-truth imagex , and then check them by
the discriminator. Notice that one sampled region may cover pixels
from multiple blocks defined in Eqn. (5). The local discriminator
Dlocal is thus designed to check artifacts at block boundaries.

The local discriminator Dlocal learns to recognize a pair of re-
gions as positive examples or negative examples. If the discrim-
inator takes the pair from the same image, Dlocal (·) = 1; other-
wise Dlocal (·) = 0. Let Ci (x) be a cropped region of size s × s
from the ground truth image x . Givenm pairs of cropped images
(C1(x),C1(IBatik )), (C2(x),C2(IBatik )), ..., (Cm (x),Cm (IBatik )), we
define the local adversarial loss L(3)

adv ′ as follows:

L
(3)
adv ′ = −

∑
m

(Dlocal (Cm (x),Cm (IBatik )) − 1)2 . (7)

We also encourage thatm pairs of cropped images should be gen-
erated with the same style. The idea is similar to [8]. By computing
local style lossL(3)

local_style , the generator learns to generate a Batik
image without blocking artifacts, as shown in Figure 4. Finally, the
BatikGAN with style and local features (named as BatikGAN_SL)
can be constructed based on the loss L(3)

BatikGAN _SL :

L
(3)
BatikGAN_SL = L

(3)
adv + L

(3)
local_l2 + L

(3)
style︸                                    ︷︷                                    ︸

Global f eature

+ L
(3)
adv′ + L

(3)
local_style︸                           ︷︷                           ︸

Local f eature

, (8)

where the adversarial lossL(3)
adv and the patch L2 distanceL(3)

local_l2
are defined as the same way in Sec. 2.2.1, and the global style loss
L
(3)
style is defined in Sec. 2.2.2.
With this system, users are allowed to generate Batik patches by

the patch generator, and then choose two favorite patches as the
input to generate Batik with mixed styles.

Figure 5: Sample Batik images obtained from the Machine
Learning andComputer Vision (MLCV) Lab, Faculty of Com-
puter Science, Universitas Indonesia [4].

Figure 6: Sample patches cut from real Batik images.

3 EVALUATION
3.1 Dataset
We adopt the dataset proposed in [4] for evaluation. Batik images
of six styles are included, including Ceplok, Kawung, Lereng, Mix
motif, Nitik, and Parang. We choose 163 Batik images of regular
styles and resize them into 128×128. After horizontal flipping and
vertical flipping, we augment the data to 652 Batik images. Some
sample images are shown in Figure 5. A Batik image is usually
constituted by two basic patches.

The patch generator is trained based on 1,304 patches cut from
the Batik images. We set the patch size as 32×32. Figure 6 shows
some patches.

3.2 Training Details
To train the patch generator, the mini-batch size is set as 32, and
the model is trained for 200,000 iterations. We randomly initialize
parameters of the generator and the discriminator. The Adam opti-
mizer is adopted to find good model parameters with momentum
0.5, and the learning rate is set as 0.0001. The gradient penalty λ is
set as 10, according to [3].

To train the BatikGAN_SLmodel, theweights forL(3)
adv ,L

(3)
local_l2,

L
(3)
style , L

(3)
adv ′ , and L

(3)
local_style are set as 1, 1, 10, 100, and 1, re-

spectively. The Adam optimizer is adopted to find good model
parameters with momentum 0.5. The learning rate for the gener-
ator is set as 0.001 and that for the discriminator is set as 0.0001.
This model is trained for 1,000 epochs.
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Figure 7: Some patches generated by the patch generation
model (best viewed in color).

In the training process, we firstminimize the lossesL(3)
adv ,L

(3)
local_l2,

and L(3)
style in L

(3)
BatikGAN _SL for 50 epochs. We then add local fea-

ture losses L(3)
adv ′ and L

(3)
local_style to L

(3)
BatikGAN _SL , and train

the local discriminator to distinguish cropped regions of size 48×48
for 950 epochs. All the weights and training settings for the Batik-
GAN and BatikGAN_S are quite the same.

3.3 Patch Generation Results
Some sample generated patches are shown in Figure 7. Let Patch(x,y)
denote the patch at the row x and the column y. Patch(2, 1) and
Patch(3, 2) are similar but are in different color. Patch(5, 4) and
Patch(6, 4) are also similar but in different color and with different
lines. This shows the patch generator has the ability to create a
variety of patches.

3.4 Batik Image Generation Results
Figure 8 shows sample generated Batik images. As can be seen, the
BatikGAN_SL model not only learns repetition of two patches but
also yields harmonious results. To compare our model with simple
repetition, Figure 9 shows the visual comparison. The proposed
BatikGAN_SL model generates Batik images with fused styles, with
more diverse and rich presentation than simple repetition.

3.5 Performance Comparison
Given two patches, we compare Batik images generated by the three
proposed models in Figure 10. In BatikGAN’s results, the generator
learns how to place two patches, but the generated results are noisy.
By considering the global style feature, the BatikGAN_S learns
fusing two styles and generates clearer results. Finally, by further
considering local features, the BatikGAN_SL learns to generate
Batik images with fewer blocking artifacts.

We can quantitatively evaluate quality of generation results
based on Fréchet Inception Distance (FID) [5]. FID measures the dis-
tance between the real distribution and the generated distribution.
It is calculated as follows: First, embedding the generated images
into a feature space by Inception Net [9]. Second, build a contin-
uous multivariate Gaussian for these embeddings and compute

Table 1: Performance comparison between the BatikGAN,
the BatikGAN_S, and the BatikGAN_SL models.

BatikGAN BatikGAN_S BatikGAN_SL
FID 168.42 163.92 137.87

Table 2: Performance comparison between [2], [6], [7], and
the BatikGAN_SL model.

[2] [6] [7] BatikGAN_SL
FID 186.65 224.96 199.20 137.87

the mean and covariance. The aforementioned two processes are
also applied to ground truth images. Third, calculate the Fréchet
distance between these two Gaussians:

FID(x,д) =∥ µx − µд ∥2
2 +Tr (Σx + Σд − 2(ΣxΣд)1/2), (9)

where (µд, Σд) and (µx , Σx ) are the mean and covariance of embed-
dings from the generated distribution and the real data distribution,
respectively.

Table 1 shows performance comparison between three models,
in terms of FIDs. As can be seen, the BatikGAN_SL’s results yield
the smallest FID.

3.6 Comparison with Other Methods
Some methods have been proposed to interpolate two styles. The
method of [2] can be used to synthesize a texture in-between two
styles. Let G1 and G2 denote as Gram matrices of two textures. A
new texture can be generated with the combination α ×G1 + (1 −
α) ×G2, where 0 ≤ α ≤ 1 is the integration factor. We first make
simple repetition based on PatchA and PatchB and generate texture
images TextureA and TextureB , respectively. We then set α = 0.5
and use the method in [2], [6], and [7] to fuse two texture styles.
We show performance comparison between [2], [6], [7], and our
method in Figure 11. In the result, although [2], [6], and [7] fuses
two patch styles, content of patches is not well maintained, and the
generated image looks a bit messy. The results of our generated
images show continuous lines and clear styles. Table 2 shows com-
parison between [2], [6], [7], and the Batik_SL model in terms of
FID.

3.7 Texture Synthesis
We also use our model to synthesize new textures based on a texture
dataset. We randomly crop 32×32 patches from the collected texture
dataset, and then feed two patches to the BatikGAN_SL model to
generate new textures. Figure 12 shows sample results. These results
show that the proposed model is generic to generate different styles
of texture images other than Batik images.

3.8 User Study
We study how users judge the generated Batik images. This sur-
vey was done by collecting replies from 209 subjects with diverse
background. We randomly show nine pairs of images to each of
them. For each pair, one is from the Batik dataset and another is
generated by the BatikGAN_SL model. The question asked was:
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Figure 8: Batik images generated by the BatikGAN_SL model. The generated images not only show repetition of two patches,
but also present fused styles based on the two given patches (best viewed in color).

Figure 9: Comparison between the generated Batik images
and simple repetition (best viewed in color).

Which looks visually better? For this question, 39% of subjects think
that the images generated by the BatikGAN_SL model are better,
41% think the true Batik images are better, and 20% think that they
are similar. These ratios show that the quality of generated Batik
images is comparable to real Batik images.

We also compare the proposed three models, i.e., BatikGAN,
BatikGAN_S, and BatikGAN_SL. We show three images gener-
ated by the three models, respectively, to each subject at the same
time. Overall, 27%, 28%, and 45% of the subjects think that images
generated by BatikGAN, BatikGAN_S, and BatikGAN_SL are the
best, respectively. This result shows that images generated by the
BatikGAN_SL model are more appreciated by subjects.

A statistical study is done to see if there is a statistical difference
between the real Batik images and the images generated by the
BatikGAN_SL model. The question asked is: According to your
instinct, which is better? The voting results are shown in Table

Figure 10: Batik images generated by the BatikGAN, the
BatikGAN_S, BatikGAN_L, and the BatikGAN_SL models
(best viewed in color).

3. In this table, numbers mean how many people vote to real Batik
images or generated image. Over nine pairs of comparison, the
mean number of votes to real Batik images is 80.78, and the standard
deviation is 24.62. The mean number of votes to images generated
by the BatikGAN_SL model is 84.67, and the standard deviation
is 20.24. At α = 0.05, we explore whether there exists a statistical
difference in means of votes. Let µ1 and µ2 denote the mean votes
to real Batik images and generated images, respectively.
Step 1 State the hypotheses and identify the claim.

H0 : µ1 = µ2 (claim) and H1 : µ1 , µ2. (10)
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Figure 11: Comparison between [2], [6], [7], and the Batik-
GAN_SL model (best viewed in color).

Figure 12: Sample texture synthesis results by the Batik-
GAN_SL model.

Step 2 Find the critical value. Since the test is two-tailed and
α = 0.05, the degrees of freedom is 9 − 1 = 8. According to the
statistical t-distribution table, the critical values are +2.306 and
−2.306.
Step 3 Compute the test value.

t = (X̄1 − X̄2)/
√
s2
1/n1 + s2

2/n2 = 0.366. (11)

Step 4 Make the decision. Do not reject the null hypothesis since
the test value 0.366 is less than the critical value 2.306.
Step 5 Summarize the results. There is not enough evidence to
reject the claim that themean numbers of votes for real Batik images
and that generated by the BatikGAN_SL model are the same.

Table 3: Statistics of subjects’ votes.

pair 1 pair 2 pair 3 pair 4 pair 5 pair 6 pair 7 pair 8 pair 9
Real Batik
images 103 118 81 48 61 65 73 112 66

Generated
images 81 57 68 119 103 81 104 67 82

Same 25 34 60 42 45 63 32 30 61

4 CONCLUSION
We have presented a regular-texture synthesis method based on
generative adversarial networks. With two patches as input, the
generator fuses styles of two patches, and generates a Batik image
of new style. By considering features progressively, the generator
learns how to fuse two styles, removes blocking artifacts, and gen-
erates harmonious Batik images. We do a comprehensive user study
and show promising results. Although the BatikGNA_SL model
successfully generates harmonious Batik images with fused styles,
the generated images are still not controllable. In the future, we
will try to investigate attributes of Batik images, and develop an
attribute-guided Batik image generator.
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