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Abstract. We present a thermal face recognition system that first trans-
forms the given face in the thermal spectrum into the visible spectrum,
and then recognizes the transformed face by matching it with the face
gallery. To achieve high-fidelity transformation, the U-Net structure with
a residual network backbone is developed for generating visible face im-
ages from thermal face images. Our work mainly improves upon previous
works on the Nagoya University thermal face dataset. In the evaluation,
we show that the rank-1 recognition accuracy can be improved by more
than 10%. The improvement on visual quality of transformed faces is
also measured in terms of PSNR (with 0.36 dB improvement) and SSIM
(with 0.07 improvement).

Keywords: Thermal face recognition · thermal-to-visible transforma-
tion · thermal face verification.

1 Introduction

Thermal face recognition has been attracting more and more attention in
the recent years due to its broad application in many domains like night-time
surveillance and access control. Face recognition has been mainly focused on
the visible spectrum but this depends on external conditions like illumination.
Imaging in the visible spectrum involves measuring the light reflected by the face.
Hence, changes in lighting conditions can cause significant changes in visual
appearance and degrade the performance of such systems. Thermal infrared
images are captured by passive infrared sensors which measure the radiations
emitted by the facial tissues, and hence are independent of the external lighting.

Infrared images are categorized according to the wavelengths sensed, includ-
ing near infrared ‘NIR’ (0.74µ− 1µm), short-wave infrared ‘SWIR’ (1µ− 3µm),
mid-wave infrared ‘MWIR’ (3µ − 5µm), and long-wave infrared ‘LWIR’ (8µ −
14µm). NIR and SWIR imaging are reflection based and visual appearance of
objects and are similar to visible images. Prior studies on NIR or SWIR im-
ages achieved promising recognition performance. On the contrary, MWIR and
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LWIR images measure material emissivity and temperature. Skin tissue has high
emissivity in both the MWIR and LWIR spectrums. Because of this natural dif-
ference between the reflective visible spectrum and sensed emissivity in the ther-
mal spectrum, images taken in the two modalities are very different and have a
large modality gap. This hinders reliable face matching across the visible spec-
trum and the MSIR/LWIR spectrums. Currently some studies have focused on
MWIR and LWIR face images, but only limited performance have been achieved
[14] [3] [5]. In the following, we would call the MWIR/LWIR spectrums as ther-
mal spectrum, and call face images captured in the thermal spectrum as thermal
faces.

(a) Thermal Image (b) Visible Image

Fig. 1: Examples from NU Dataset

The goal of thermal face recognition is to identify a person captured in the
thermal spectrum by finding the most similar face images captured in visible
spectrum. This task is thus a cross-modal matching problem, where we need a
non-linear mapping from the thermal spectrum to the visible spectrum while
preserving the identity information.

We present a deep convolutional neural network based on the U-Net [13]
architecture for the thermal face recognition task. U-Nets have been widely used
for various tasks including image segmentation [13], image feature extraction
[2], etc. In our work, the U-Net is used to synthesize visible faces from given
query thermal faces. The generated faces are used for matching against the
gallery images. To improve upon visual quality of the generated visible face
images, we propose a modified U-Net architecture using residual blocks instead
of convolutional layers as the basic building components. It has been shown in
[10] that the skip connections in residual networks [4] give rise to much smoother
loss surfaces than similar networks without skip connections. Hence, they are
easier to train and are able to find much better local optimums. In addition to
this, we use pixel shuffle upsampling in the expansive part of our network in
place of transposed convolutional layers. Pixel shuffle upsampling introduced in
[15] achieves much better Peak Signal to Noise Ratio (PSNR) compared to other
upsampling methods at a fraction of the computation cost.

In this paper, we evaluate the proposed networks on the thermal face dataset
collected by Nagoya University [9] (which we will call the NU dataset). In the NU
dataset, visible and thermal face pairs are available. In contrast to other thermal
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face dataset, visible faces and thermal faces were captured simultaneously by two
closely located cameras. Therefore, the visible face and the thermal face of the
same individual are well aligned. Such alignment is important for us to clearly
study the performance of our models.

The rest of this paper is organized as follows. Sec. 2 describes related works
of thermal face recognition. Sec. 3 presents details of the proposed method.
Evaluation results are shown in Sec. 4, followed by concluding remarks in Sec. 5.

2 Related Works

Existing thermal to visible face recognition works can be roughly grouped
into two categories: (1) transforming faces in the thermal spectrum into the
visible spectrum, and then conducting recognition; (2) projecting thermal faces
and visible faces into the common feature space and then achieving recognition.

Kresnaraman et al. [9] transformed the given thermal face into a visible face
by utilizing the relationship between images in the thermal and visible spectra
obtained by canonical correlation analysis. Given a polarimetric thermal face
that is composed of three channels, Riggan et al. [12] proposed to extract features
and then estimate the corresponding visible face based on a regression model.
Both feature extraction and regression are developed based on convolutional
neural networks. The same research team later proposed to improve quality of
face synthesis by jointly considering global (entire face) and local regions (eyes,
nose, and mouth) [11]. With a similar idea, Chen and Ross [1] proposed to
develop a semantic-guided generative adversarial network to transform thermal
faces into visible faces. The semantic labels obtained by a face parsing network
provide important clues to improve synthesis.

One of the pioneering works in the second category is the deep perceptual
mapping (DPM) [14]. Sarfraz and Stiefelhagen first extracted dense SIFT fea-
tures from patches of thermal faces, and then transformed these features by an
auto-encoder. The objective of this auto-encoder is to map the given features
into that similar to the features extracted from the corresponding visible face.
Iranmanesh et al. [7] proposed a coupled deep neural network architecture to
make full use of the polarimetric thermal information. Taking VGG-16 network
as the basic building component, polarimetric thermal faces and corresponding
visible faces are fed to VGG-16 like networks to extract and embed features.

Our work falls into the first category, and we mainly focus on basic thermal
faces rather than polarimetric thermal faces. In the evaluation, we would com-
pare several proposed variants with one from the first category, i.e., [9], and one
from the second category, i.e., [14].

3 Methods

The thermal face recognition problem is formulated as follows. Assume that
we have a set G of visible faces called the gallery set. Given a thermal face x,
called the probe, the visible face in G which corresponds to the same person
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as x needs to be found. For this, we design a mapping f from the domain of
thermal face images T to visible face images V. This mapping f is learnt from
the training data using a deep convolutional neural network (CNN). Given a
probe x, the visible face ŷ is reconstructed using the learnt mapping function f ,
i.e., ŷ = f(x). The Euclidean distance between ŷ and each of the images in G
is calculated, and the one with minimum distance to ŷ is returned as the match
y∗. That is,

y∗ = argmin
t∈G

‖t− f(x)‖2 . (1)

Alternatively, a pretrained face recognition network can be used to find the best
match. In this case, the pretrained network can be thought of a mapping g from
the domain of visible face images V to RN , i.e., given a visible face images, the
network gives an encoding of the input as a vector of size N . The encodings are
such that Euclidean distance between encodings of images of the same person is
small while it is large for different people. For this,

y∗ = argmin
t∈G

‖g(t)− g (f(x))‖2 . (2)

3.1 U-Net Model for Face Recognition

The transformation function f that transforms a thermal face into a visible
face is the most critical component in this work. We use a U-Net to develop
the function f . Figure 2 shows the network structure. A U-Net has a contracting
path and an expansive path. The contracting path is a conventional convolutional
neural network, where the convolutional kernel is 3 × 3 with stride 2 and same
padding; the activation function is ReLU, followed by a 2 × 2 max pooling for
downsampling.

Conv 3x3 + ReLU

Max Pool 2x2

Transposed Conv

Fig. 2: The baseline network architecture. The dashed lines represent the skip
connections in U-Net. Notice that the baseline encoder-decoder model does not
have these connections.

Following [13], the number of feature channels are doubled at each downsam-
pling step. In the expansive path we halve the number of feature channels at each
upsampling step, by 2 × 2 transposed convolution. Every step in the expansive
path contains upsampling, a concatenation with the corresponding feature map
from the contracting path, and two convolutional layers similar to those in the
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contracting path. The last 1×1 convolution used in [13] has been omitted in our
work, since we found that it gives better results. To demonstrate effectiveness of
the skip connection in U-Net architecture, we will compare our architecture with
a baseline model without these skip connections. Both the networks are trained
using the same protocol based on a weighted combination of mean square error
(MSE) loss and perceptual loss, which will be described later.

3.2 ResNet U-Net with Pixel Shuffle

The expansive part of the U-Net is implemented by deconvolution and con-
ducts a sequence of upsampling. Given the feature maps generated by the con-
tracting part, we can view the expansive part as a sequence of super-resolution
processes, which upsample a low-resolution image into a high-resolution one. Shi
et al. [15] proposed an efficient sub-pixel convolutional neural network to en-
able real-time super-resolution. Not only computational efficiency, the proposed
sub-pixel CNN also yields better visual quality of high-resolution images.

In our work, we propose to view the expansive part of a U-Net as the process
of super-resolution, and attempt to integrate sub-pixel CNNs to get performance
improvement. This method is usually also called pixel shuffle, and we will take
this term in the following. In addition, we further try to consider residual blocks
[4] to improve visual quality of transformed faces.

Pixel Shuffle Upsampling: Upsampling by a factor r can be achieved by trans-
posed convolution with a stride r or a fractionally strided convolution with a
stride 1

r [15]. Pixel shuffle upsampling is an efficient implementation of the frac-
tionally strided convolution. In this a H ×W ×C · r2 tensor is rearranged into a
rH × rW × C tensor thus achieving an upsampling by a factor r. Our network
uses r = 2 to upsample tensors by a factor of 2 in the expansive part.

Conv2d

Batch Norm

ReLU

(a) Convolutional block

xConv Block 3x3

Dropout p = 0.3

Conv Block 3x3 +

(b) Residual block

Fig. 3: Illustration of convolutional blocks and residual blocks.

Residual Blocks: To further improve upon visual quality of the generated vis-
ible face images, we make the following modifications to our above network. The
convolutional layers used are replaced by residual blocks each consisting of two
convolutional blocks with a dropout [17] layer in between, as shown in Figure 3b.
Each convolutional block (Figure 3a) is made up of a 3× 3 convolutional layer,
and a batch normalization layer [6] followed by ReLU activation. In the residual
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blocks, using ideas from [19], the number of input channels is first doubled and
then halved such that the resultant tensor has the same shape as the input. We
use 2×2 max pooling for downsampling but in the upsampling path, pixel shuffle
upsampling [15] is used instead of transposed convolution. The number of chan-
nels are doubled and halved in the downsampling and upsampling, respectively,
using 1× 1 convolutional layers following each residual block. The final network
architecture is shown in Figure 4.

Residual Block

Conv Block 1x1

Max Pool

Pixel Shuffle

Fig. 4: The architecture of the proposed U-Net with residual blocks and pixel
shuffle upsampling.

3.3 Losses

We use a weighted combination of two loss functions, namely mean squared
error loss and perceptual loss to train our networks. These loss functions are
described below.

Perceptual Loss proposed in [8] is used to measure the high-level semantic
differences between transformed images and target images. It ensures that the
transformed image is perceptually similar to the target. Given a transformed
face ŷ and a visible face y, a VGG-19 network [16] pretrained on the ImageNet
dataset is used to extract features from them. The feature maps output by the
last layer of each convolutional block are taken as the features. Let φj(ŷ) and
φj(y) denote the features extracted by the j considered convolutional layer,
from the transformed face ŷ and the visible face y, respectively. Perceptual loss
between φj(ŷ) and φj(y), both of shape Hj ×Wj × Cj , is defined as

Lfeat
j (ŷ, y) =

1

HjWjCj
‖φj(ŷ)− φj(y)‖22 , (3)

where Hj and Wj denote height and width of a feature map φj(ŷ) (or φj(y)),
and Cj denotes the number of channels (feature maps). Overall, the perceptual

loss between an image and its reconstruction is the mean of Lfeat
j over all j.

Mean Squared Error Loss ensures that the identity of the thermal face is
preserved in the reconstructed visible face, i.e., ensuring fidelity between the
thermal images and its transformation.

LMSE (ŷ, y) =
1

HW
‖ŷ − y‖22 . (4)
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For training, we linearly combine two losses:

L (ŷ, y) = LMSE (ŷ, y) + λ · Lfeat (ŷ, y) , (5)

where λ = 0.01.

4 Results

4.1 Evaluation Dataset

We evaluate the proposed networks on the thermal face dataset from Nagoya
University, which consists of 180 Japanese subjects (169 males and 11 females).
Five pairs of thermal faces and visible faces were captured for each individual.
The ordinary camera capturing the visible spectrum and the thermal camera
capturing LWIR images were mounted closely, and the same pair of thermal and
visible faces were captured simultaneously, making the image pairs very well
aligned. This characteristic is distinct to other thermal face datasets, and pro-
vides us a good foundation for the proposed study. There are thus 900 thermal
images and 900 visible images in total. All of them are frontal faces with neu-
tral expression. The thermal images were captured by the Advanced Thermo
TVS-500EX camera, which senses wavelength ranging from 8µm to 14µm. The
corresponding thermal and visible images were captured at the same time, and
underwent the same preprocessing. After cropping, calibration, and resizing, res-
olution of both types of images is 56 × 64 pixels. Fig. 1 shows a sample image
pair from the NU database.

In the evaluation protocol of [9] and [3], 180 individuals are separated into
two parts, i.e., 160 people and 20 people. The 160 people in the first part are
equally divided into 16 groups, i.e., each group consists of 10 people. Among
the 16 groups, 15 groups are selected as the training set. Thermal faces of the
remaining group, consisting of 10 people, are taken as the probe image set (test
data). In the gallery set, in addition to visible images corresponding to these
10 people, the 20 people in the second part separated at the beginning are also
included in the gallery set to increase the number of candidate identities, i.e.,
increasing noise. These 20 people are also used as the validation set during
training.

The models are trained with the Adam optimizer with learning rate of 0.01
for 150 epochs. A learning rate decay of 0.6 every 25 epochs is also used.

4.2 Face Recognition

First, we transform the thermal face images from the probe set to visible
spectrum using the model illustrated in Fig. 4. The transformed images are
then matched against the visible face images in the gallery set, and the one
with the minimum Euclidean distance from the transformed probe is selected.
The match is considered to be correct if the selected visible face and the query
thermal face are of the same individual. We measure the rank-1 recognition
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accuracy which is averaged over 5 different splits of the dataset. The results of
canonical correlation analysis (CCA) [9], deep perceptual model (DPM) [3] and
the baseline encoder-decoder model (illustrated in Fig. 2) are compared with
the proposed model (ResNet U-Net without/with Pixel Shuffle, illustrated in
Fig. 4), as shown in Table 1. Please notice that all the methods but DPM in this
table are developed for transforming thermal faces into visible faces. DPM uses a
basic auto-encoder to transform features extracted from thermal faces into that
similar to the corresponding visible faces. We take the auto-encoder part as the
transformation, and do the same thing as other methods. Because this is not the
original DPM, we denote this approach DPM* in Table 1, Table 2, and Figure 5.

Table 1: Rank-1 thermal face recognition accuracy.
Methods Average Accuracy (%)

CCA [9] 14.00
DPM* [3] 59.50
Baseline U-Net 67.60
ResNet U-Net (w/o PS) 68.80
ResNet U-Net (w. PS) 69.60

As can be seen, the baseline U-Net improves recognition accuracy over the
basic auto-encoder from 59.50% to 67.60%. The proposed ResNet U-Net with
pixel shuffle further provides performance over the baseline U-Net by 2%. This
result shows effectiveness of taking residual blocks as the components in the U-
Net over the baseline U-Net. The skip connections allow the model to infer finer
details which may be lost in the downsampling part of the network.

(a) The input thermal Images (b) DPM*

(c) baseline U-Net (d) ResNet U-Net without PS updampling

(e) ResNet U-Net with PS upsampling (f) Ground Truths

Fig. 5: Comparison of reconstructed visible images for all our models
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4.3 Face Transformation

The main idea of this work is to transform thermal faces into visible faces,
and then conduct face recognition in the visible domain. Therefore, we would
like to evaluate the quality of transformed faces in the following.

We compare transformed faces by DPM [3], the baseline U-Net model, the
ResNet U-Net model without pixel shuffle (PS) upsampling, and the ResNet
U-Net model with PS upsampling. Fig. 5 shows sample transformation results
of different models. From these samples, we clearly can see that DPM and the
baseline U-Net yield relatively blurry visible faces. On the other hand, comparing
Fig. 5c with Fig. 5d, the ResNet U-Net model without PS upsampling yields
much clearer faces, which shows the effectiveness of residual blocks. The ResNet
U-Net model with PS upsampling further slightly improves visual quality.

Table 2: Visual quality comparison of different transformation methods.
Method PSNR (dB) SSIM

CCA [9] 20.260 0.730
DPM* [3] 19.709 0.705
baseline U-Net 19.499 0.672
ResNet U-Net (w/o PS) 19.803 0.781
ResNet U-Net (w. PS) 20.627 0.803

To quantitatively evaluate different models, we calculate the average Peak
Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) [18] values
of transformed faces. Table 2 lists the values. Two observations can be made
from this table. First, values of PSNR and SSIM may not always be consistent
with human perception. For example, samples in Fig. 5d look much better than
Fig. 5b, but in terms of PSNR, the ResNet U-Net model without PS upsampling
(PSNR=19.803) is just slightly better than the DPM (PSNR=19.709). Second,
our ResNet U-Net model with PS upsampling consistently performs better than
all other methods on both the metrics. Also, the results with PS upsampling are
better than those without it, which justifies the effectiveness of viewing a part
of transformation as a super-resolution process.

5 Conclusion

We have presented a framework to reconstruct visible faces from thermal faces
preserving identity of the subject. In the proposed network, a U-Net model with
residual blocks as the building components are used. Using sub-pixel convolution
and pixel shuffle upsampling, we are able to transform thermal faces into realistic
visible faces. Based on the transformed faces, recognition performance better
than the canonical deep perceptual model and other variants can be obtained.
In the future, more extensive experiments can be conducted. We would build
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a robust thermal face detection system so that these combined can be used for
thermal face recognition in real-world situation.
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